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H,, CONTROL FOR IMPULSIVE DISTURBANCES:
A STATE-SPACE SOLUTION *

Q.F. Wei , W.P. Dayawansa, and P.S. Krishnaprasad
Institute for Systems Research and

Department of Electrical Engineering
University of Maryland, College Park, MD 20742.

Abstract

In this paper we formulate and study an interesting (sub)optimal H, con-
trol problem related to the attenuation of impulsive disturbances to a class
of linear systems. Among the motivating factors is the need to study control
problems related to mechanical systems subject to impulsive forces, e.g. ac-
tive control of the suspension system of a vehicle, accurate pointing of guns,
stabilization of an antenna on the space station subject to impact from space
debris, or active damping of vibrations of flexible structures caused by impact
forces [1, 2]. A reasonable control objective in all these problems is to design
a stabilizing controller to minimize the induced operator norm from the impul-
sive disturbances to the controlled outputs. We derive necessary and sufficient
conditions for the existence of a (sub)optimal controller, and give a procedure
to compute such a controller when one exists.

1 Introduction

An important paradigm in control synthesis is the H, control problem, introduced
by Zames [3]. In this formulation disturbances are assumed to belong to a ball in
a certain function space, and control inputs are computed in order to minimize a
quadratic cost function assuming that the disturbances are worst possible. Various
theories of Hy control problems have been developed by many researches [4, 5,
6, 7, 8, 9] and procedures for solving them have been given via frequency domain
methods and more recently, using state-space methods. In this paper, we consider
a (sub)optimal Hy, control problem for the attenuation of dynamical effects due to
an impulsive disturbance. Motivation for this arises from the need to study control

"This research was supported in part by the AFOSR University Research Initiative program
under grant AFOSR-90-0105, by the NSF Engineering Research Center Program: NSFD CDR
8803012, by ARO University Research Initiative under Grant DAALO3-92-G-0121, and by NSF
Grant ECE 9096121.



problems related to mechanical systems subject to impulsive forces, e.g. active
control of the suspension system of a vehicle, accurate pointing of guns, stabilization
of an antenna on the space station subject to impact from space debris, or active
damping of vibrations of flexible structures caused by impact forces. A reasonable
control objective in all these problems is to design a stabilizing controller to minimize
the induced operator norm from the impulsive disturbance to the controlled output.
Our approach is based on the state-space method[10]. Impulsive disturbance is
denoted by vy and is assumed to live in the I space. The controlled output is
denoted by z. Our goals are (1) to give necessary and sufficient conditions for the
existence of a stabilizing controller such that ||2|z, < 7||vo||;, for all vy # 0 and a
given +y, and (2) to give a procedure to compute such a controller when one exists.

2 Formulation of Control Problem

In this section, the control problem is formulated with the specification of system
dynamics, performance index, and general assumptions. Let Iy denote the Hilbert

space of square-summable complex-valued sequences {zy,k > 0} with the norm
defined as

lllley == (D lzx )72, (2.1)

k=0
Let Ly denotes the Hilbert space of all complex-valued Lebesque measurable func-

tions z(t) defined on the [0,00) with the property that |z|? is Lebesque integrable.
The norm

lalley = ([ la|dt). (2:2)

We consider a finite-dimensional linear system

z Ly Lig Vo
HEES SN &
where z(t), y(t) are controlled and measured output vector, respectively. They are
piecewise-continuous signals. There are two kinds of input signals, u the control
vector which is assumed to be piecewise-continuous, and vy the impulsive distur-
bance vector which is assumed to be in the Iy space. L;;,%,j = 1,2 are the linear
operators mapping from {vg,u} to {z,y}. This is a hybrid system since it contains

both continuous time and discrete time components. We assume that the system
(2.3) admits a state space realization of the form:

z(t) = Az(t)+ iBgvo(i)é(t —1T;) + Bru(t),
1=0

z2(t) = Ciz(t) + Dyu(t),
y(t) = Caux(t), (2.4)



where z(t) are n x 1 state variables. A, By, Bs,C1,Cs, D; are constant matrices with
proper dimensions. T is the interval between the (i — 1)** and 4** impulses. In the
rest of this paper, we assume that this time interval is constant, ie., T; =T, i =
0,1,2,.----- . The 4(¢) is the standard Dirac Delta distribution. It is easy to see
that the effect of impulsive disturbances is to cause possible jumps of state variables.
For convenience, the state space equations (2.4) can be put into the following form
also:

) Az(t) + Byu(t), t#1T,

) = =z(t)+ Bowp(i), t=1iT, i=0,1,2,--- :

) = Ciz(t) + Diu(t)

) = Caz(t) (2.5)

where z(t*) denote the values of state variables after jump. The state variables z(t)
are right continuous and may be left discontinuous due to the possible jump.

The control problem here is to design a stablilizing controller to attenuate effects
of the impulsive disturbance vy on the controlled output 2. This problem can be
studied in the Hy, control framework [3, 4, 5]. The solution for a special case of this
problem by frequency-domain methods is given in [11]. Let us define K as the set
of all causal, finite-dimension linear stabilizing controllers.

We will now introduce a minimax performance measure which is motivated by [10].
For k € K define a performance measure,

1112,

J(k) =
vo€l2,v0#£0 ||volll22

). (2.6)

J(k) can also be viewed as the induced norm of the linear operator from Iy — Lo.
The control objective is to find a controller £ € K to minimize the worst case per-
formance measure J(k). Specifically, we solve the following (sub)optimal problem.
Given a real v > 0, try to find a £ € K such that following inequality holds,

J(k) < ~* (2.7)
or equivalently,
12117, —7*llwolli, < 0, (2.8)

for all possible vy € Iy, under the constraints of system equations (2.5). If such a
controller k exists, we call it a y—level disturbance attenuation controller.



3 Main Results

We start with a standard H, control problem treated in [5, 6] where we consider a
continuous LTI system. It is well known that a state-space solution of H,, control
is closely related to the Riccati equations. If full state-feedback is available, a con-
troller exists iff the unique solution of the associated algebraic Riccati equation is
positive definite. In addition, a formula for the state-feedback gain matrix was given
in terms of the solution of the Riccati equation. Similar results can be obtained for
discrete-time systems [8] and time-varying systems[12].

It should be noted that the control problem defined in (2.8) is different from the
standard Hy, problems treated in [5, 6] or [8, 12]. The system (2.5) is a hybrid system
which contains both continuous and discrete components, the formulas obtained in
[5, 6, 8, 12] can not be applied to this problem, but the essential ideas can be carried
over to analyze the control problem (2.8). For state-feedback control, instead of one
algebric Riccati equation involved in problerms [5, 6], we will have two coupled Riccati
equations given by

K(t) = —-A'K{t)-K@#)A+K(@t)B1BjK(t)—CiCy, t#iT  (3.1)
K(@iT%) = K(T)+ (BYK(ET)) (21 — BLK(iT)Bs) 'BYK(T)  (3.2)

where v > 0 is a given real number and T > 0 is the time interval between each
jump. The n x n matrix-valued function K (¢) is right continuous and may be left
discontinuous. We use K (iT') to represent the value of K () just before the i** jump,
ie., K(iT) := limeyg -0 K (3T — €) assuming that the limit exists.

We state the our main results as Theorems 3.1-3.3.

We assume that all state variables are measured. We consider the infinite horizon
problem with zero initial state. First the following standard assumptions are made.

i) (4, By) is controllable, (C1, A) is observable.
ii) D{[Cy Di}=[0 I].

Assumption i) is standard in the quadratic regulator of linear system. It can be
relaxed by the assumption that (A, B;) is stabilizable and (Ci, A) is detectable.
Assumption ii) is made here just for the sake of simplicity. Relaxing this assumption
will only complicate the formulas, but an analysis can be carried out along lines
similar to what appears below.

Theorem 3.1 Consider the hybrid system described by (2.5). Let v > 0 be given.
Suppose that the assumptions i) and 1) hold. Then there exists a stabilizing con-
troller k € K such that J(k) < 2 if there exists a unique stabilizing positive definite



periodic solution P(t) of the coupled Riccati equations (8.1)-(3.2). Moreover, if this
condition is satisfied, one such stabilizing state-feedback controller is given by

u(t) = —B\P(t)z(t), ¥t> 0. (3.3)
a

Remark 3.1 As v — oo, the equations (3.1)-(3.2) degenerate into a continuous-
time Riccali equation,

K(t) = —A'K(t)-K(t)A+K(t)B1B,K(t) —C,Ch, (3.4)

This Riccati equation will yield a unique postive definite constant matriz solution
under the assumption i). The unique solution internally stabilizes the associated
closed-loop system by the standard LQG theory. Thus, the Hy, problem degenerates
into a LQG problem as vy — oo.

A very useful tool to analyze the Riccati equations is the Hamiltonian theory, this
solution of a Riccati equation can be obtained by solving a suitable set of linear
differential equations. The Hamiltonian matrix associated with continuous time
Riccati equation (3.1) is given by

A -BiB;
Hz[—C{Cl _2,1]. (3.5)

As usual let us consider a 2n order differential equation,
X(t) = HX(t), t#iT. (3.6)
The state transition matrix associated with H is
X@®) = @p(t,7)X(1), t=>71, and t,7 #iT, (3.7

where @y (¢, 7) has the following properties,

0Py (t
—“% = H®g(t,7), ®g(r,7)=1. (3.8)
The symplectic matrix associated with difference Riccati equation (3.2) is given by
_ | I BBy
F = [ 0 7 . (3.9)

Let us define a 2n order difference(jump) equation as follows,

X(tt) = FX(t), t=iT. (3.10)



The combined equations (3.6) and (3.10) is a hybrid system. For 7 = iT,i =

0,1,---,---,and 7 <t < (i + 1)T, we have,
X@t) = og(t,1)FX(1),
= O, 7)X(7). (3.11)

We will show later that this state transition matrix ®(¢,7) of the hybrid system
displays same properties familiar with a periodic system.

Now, let P(t) be a periodic solution of equations (3.1)-(3.2). We will study the
associated closed-loop system,

#(t) = [A— BiB,P(t)z(%). (3.12)

Definition 3.1 A periodic solution P(t) of (8.1)-(3.2) is called a stabilizing solution
if the closed-loop system (8.12) is asymptotically stable.

Let us consider the following hybrid system first,

#(t) = [A-BiBiP(t)]z(t),

= At), t#iT, (3.13)
z(tt) = [I—~"?B:ByP(t)]a(t),

= Ft), t=iT. (3.14)

It is easy to see that this hybrid system is actually the closed-loop system for an im-
pulsive disturbance generated by state-feedback. Thus, the asymptotically stability
of this hybrid system provides a necessary condition for asymptotically stabilizing
of closed-loop system (3.12).

Theorem 3.2 Let v > 0 be given. Suppose that the assumptions i) and i) hold.
Then a necessary and sufficient condition for the ezistence of a unique positive
definite periodic solution P(t) to equations (3.1) - (8.2) such that the hybrid system
(3.18)-(3.14) is asymptotically stable is that no eigenvalue of ®(T,0) lies on the unit
circle. O

The next theorem gives necessary and sufficient conditions that the unique positive
definite periodic solution stabilizes the associated closed-loop system:.

Theorem 3.3 Suppose that the assumptions 1) and i1) hold. Let P(t) be the unique
positive definite periodic solution of (3.1) and (3.2). Then P(t) is a stabilizing
solution iff the following inequality holds,

We(T) — @4 (T, 0)Qitmp(T)®4.(T,0) >0 (3.15)



where,
T
Wo(T) = /0 & 4. (r,0) H(r) H(r)® 4, (r,0)dr (3.16)

and B4, (t,7) is state transition matriz of A.(t). The matrices A (t), H(t) and
Qimp(T) are defined by

Ac(t) = A- BlBip(t)a
H(t)H(t) = CjCi+ P(t)BB1P(t),
Qup(T) = (ByP(T)) (v*I = ByP(T)By) ™' ByP(T). (3.17)

O

4 Background and Technical Lemmas

In order to prove Theorems 3.1-3.3, we need to develop theory and technical ma-
chinery to analyze the coupled Riccati equations (3.1) and (3.2). Specifically, 1) we
will give conditions for existence of periodic solutions of equations (3.1) and (3.2),
2) If such conditions are satisfied, we will parametrize all stabilizing periodic solu-
tions. The technical machinery is built here based on the analysis of the standard
periodic systems [13, 14, 15]. We will show that equations (3.1) and (3.2) display
same properties familar with a standard periodic system, the main difference being
that we need to take care of the jumps in the state which actually result in the
periodic solutions. For the sake of simplicity, we are not going to give all proofs to
the lemmas and theorems developed in this section. The complete proofs can be
found in [16] and similar proofs for a standard periodic system can be found in [13].

Let ®(t,7) defined in (3.11) be partitioned into four n x n matrices as follows,

dqq (t, T) ‘1312(t, 7')

q)(t, T) - <I)21 (ta T) (I>22 (t, T)

(4.1)

It is easy to show that ®(¢,7) has the property for all ¢ and 7,
Ot+T,7+T) = @(,71). (4.2)
Lemma 4.1 The eigenvalues of ®(t + T',t) are independent of t.

Proof: Without loss generality, we assume t € (0,T). By definition,
®(t+T,t) = @gt+T,THFoy(T,t)
Dy (t,07)FOg(T,t)
= O (T,t)2u(T,0")Foy(T,t)
= OFNT,t)®(T,0)®x(T,1).
Thus, the eigenvalues of ®(t + T,t) are independent of t. m]

7



The hybrid state transition matrix ®(¢+7T,t) displays same properties familiar with
periodic systems. Hence we may expect that there exists a periodic solution of
equations (3.1)-(3.2). For simplicity, we will assume that the matrix ®(7,0) has
distinct eigenvalues. Let A be the corresponding diagonal Jordan form such that

S710)®(T,0)5(0) = A, (4.3)

where the matrix S(0) is composed of eigenvectors of ®(7',0). It should be noted
that the derivation of results can be applied to the case of multiple eigenvalues with
minor modifications. Now partition S(0) into four n x n matrices

S(0) = [f{% Zég” (4.4)

and partition A similarly. Then equation (4.3) can be written as,

®11(T,0) <I>12(T,O)HY(O) V(O)]zlY(O) V(O)HA1 o] (45)
®21(T,0) 22(T,0) || X(0) U(0) X(0) U(©) [[ 0 Ap '

where A; is an n X n diagonal matrix,

Ay = diag{\,------ yAn} (4.6)
and {Ag,------ ,An} are n of the 2n eigenvalues of ®(T,0). Let us define a 2n x 2n
matrix S(t) for t > 0 by

S(t) = ®(¢,0)5(0). (4.7)

Again, partition S(¢) as follows,

S(t) = [ )’;8 gg; ] (4.8)
Lemma 4.2 The equation ®(t + T,t)S(t) = S(¢)A holds for all t > 0. O

It is easy to show that the following equation also holds,

d—zi—tl = HS(@), t#iT,
Stt) = FS@t), t=iT,i=0,1,2,------ , (4.9)

Theorem 4.1 Let )\ be an eigenvalue of ®(t,7) and [ be the corresponding

| —

z

Y
of ®(t,T)" associated with A~ *. O

Y
z
eigenvector. Then \~! is also an eigenvalue of ®(t,7) and [ ] is the eigenvector



4.1 Parameterization of periodic solution with jumps

The following theorem gives a parameterization of all periodic solutions of equations
(3.1)-(3.2) in terms of X (t) and Y (¢) defined in equation (4.8).

Theorem 4.2 Suppose Y (t) defined in equation (4.8) is non-singular for all t €
[0,T). Then P(t) given by

P(t) = X@)Y (@™, t>0 (4.10)

is a periodic solution of equation (3.1) and (3.2).

Proof:
St+T) = ®(t+T,0)5(0)
= O+ T,t)(t,0)5(0)
= S@)A
Therefore,
Y(t+T) Y(t)
[ 110 | o2 i

Pt = XQY®) ' -X@OY@#)Y@)Y(@)?
= [-CIOY () - AX@Y () - XY @)
[AY () - BuB X ()Y (1)~
= —A'P(t)— P(t)A+ P(t)B1B{P(t) — C1C4
P(0*) = X(Hy(0H) !
= X(0)[Y(0) -y *B:B;X(0)] ™"
= P(0)[I —y7?B;B;P(0)]™" (4.12)

It is easy to show that P(0%) satisfies equation (3.2). Thus P(t) in equation (4.10)
satisfies equations (3.1) and (3.2). It is periodic since from (4.11),

P+T)=Xt+T)Yt+T)' = XA [Y ()AL = P(1). (4.13)
O
Remark 4.1 It is obvious that periodic solution is generated by jump terms. If

v — oo, the jump terms vanish and P(t) will degenerate into a constant matriz
solution.



4.2 Analysis of periodic solutions with jumps

The following Lemmas(4.3)-(4.6) characterize the properties of a solution P(t) that

depend on the choice of n eigenvalues Ay, ------ An for Ay. Let
Qt) = Y@)X(@), (4.14)
Q) = Y@R'X@®), (4.15)

where * is used to denote the complex conjugate transpose. Suppose Y (¢)| # 0 for
all t € [0,T], P(t) can be rewritten as,

P(t) = X@Y@H)™
= YO™uYe

Y (&) "YQ@)Y (@) (4.16)
Lemma 4.3 If \} # )\j_l for alli,j,1 <4,j <mn, then Q(t) is Hermitian and real.
O
Lemma 4.4 If |\ <1 foralli=1,2,---... n, then Qt) is positive definite. O
Lemma 4.5 Assume that |Y (t)| # 0 for all t € [0,T]. If \} # )\j_l and \; # )\j_l
for all i,5,1 < 4,5 <n, then P(t) defined by equation (4.10) is real. a
Theorem 4.3 Assume that for all eigenvalues of ®(T,0), |N;| #1,i=1,2----- 2n
and that |Y(t)| # 0 for all t € [0,T]. If n eigenvalues in A, are chosen such that
|Ai| < 1,i=1,2-----. n, then a periodic solution P(t) given by equation (4.10) is

real, symmetric and positive definite.

Proof: The assumption |\;| <1 for alli=1,2-----. n guarantees that A} # )\j—l

and A; # )\j_l for all i,5,1 < 4,5 < n. Therefore P(t) is real and symmetric by
Lemmas (4.3) and (4.5) respectively. That P(t) is positive definite follows from
Lemma (4.4) and equation (4.16). O

4.3 The Periodic Lyapunov Equation

Our approach for the analysis of the closed-loop system (3.12) is based on the Lya-
punov method. As is well-known, the Lyapunov equation plays an important role
in the analysis of Riccati equations and the associated closed-loop systems. Here
we extend some useful results on the periodic Lyapunov equation to our particular
problem, namely, to the periodic Lyapunov equation with jumps.

Let P(t) be a solution of the coupled Riccati equations (3.1)-(3.2),

P(t) —A'P(t) — P(t)A+ P(t)B1B{P(t) — CiC1, t #iT  (4.17)
PGET*) = P(T) + (B4P(T)) (v — BYP(iT)By) "' B4P(T).  (4.18)

10



It can be rewritten as a Lyapunov-type equation,
P(t) = —Al(t)P(t)— P(t)Ac(t) — H(t)'H(t), t #iT (4.19)
P@ETT) =  P(T) + Qump(iT). (4.20)

where A(t), H(t) and Qump(¢T) are given in (3.17). Therefore, we can obtain the
following results from [17, 18]. If P(-) is a symmetric periodic solution of the Riccati
equation (4.17)-(4.18), then P(-) is also a solution of the Lyapunov equation (4.19)-
(4.20). The structural properties of the pair (H(t), A¢(t)) can be related to the ones
of the pair (C}, A) by means of the following Lemma [18, 19].

Lemma 4.6 The pair (Cy, A) is observable iff, for any T—periodic matriz P(-), the
pair (H(t), Ac(t)) is observable. ]

The solution of equations (4.19)-(4.20) is given by the celebrated formula [20]. Let
Py be the initial condition of equation (4.19) at time %o, the solution of the equation
(4.19) is given by

P(t) = ' (to) ) Po®a. (0, 1) / &'y (r,t)H(r) H(r)®'y (r,t)dr.  (4.21)
Without loss of generality, we assume ¢y = 0, then P(T') is given by
P(T) = ®,_(T,0)"* Py@ (T, 0)" / &', (r,T)H(r) H(r)@, (1, T)dr. (4.22)

Since we are looking for the periodic solutions of equations (4.19)-(4.20), the periodic
generator Py must satisfy the following algebraic Lyapunov equation

P = ¢f4¢ (T’ O)PO(DAC (T, O) + W(T) (423)
where the W (T) is given by
W(T) = W(T) — <I>i4c (T,0)Qimp(T)® 4, (T, 0). (4.24)

Proposition 4.1 [21] The Lyapunov equations (4.19)-(4.20) admit o unique pos-
itive periodic solution iff the algebraic Lyapunov equation (4.23) admits a positive
definite solution Py. a

Proposition 4.2 Suppose that the A (t) is asymptotically stable. Then the nec-
essary condition that algebraic Lyapunov equation (4.23) admits a positive definite
solution is that W(T) defined in (4.24) is positive definite. a

5 Proofs of Theorem 3.1-3.3

Now, we are ready to prove the main results of this paper. First we prove the

Theorem 3.2, then we prove the Theorem 3.3. Finally, we consider the Theorem
3.1.

11



5.1 Theorem 3.2
Recall the hybrid system defined in (3.13)-(3.14),

#(t) = [A-B1BiP(t)]x(t),
= AJt), t#iT, (5.1)
z(t*) = [I—77B:ByP(t)]x(t),
F.(t), t=iT. (5.2)

Denote the state transition matrix of the hybrid system (5.1) -(5.2) by ®.(t, 7). It
has the following properties,

BT~ e, 53)
O (1T, 7) = Fu1). (5.4)

Theorem 5.1 Let P(t) in equation(4.10) be substituted into equation (5.1) and
(5.2). Also let ;i =1,2,------ n be n eigenvalues of ®(T,0) used to form Ay in
equation(4.6), then ®.(t,0) is given by

®(t,0) = Y()Y(0)™ (5.5)
and the eigenvalues of ®,(T,0) are Aj,i =1,2,------ n.

Proof: Using equation (4.9), we have

q)c(ta 0) = Y(t)Y(O)_l

[AY () - B1BI X ()]Y (0) ™

[A — B1B1 P(t)]2(t,0)

= A().(t,0). (5.6)

$,(0%,00 = Y(OHY(0)™
= [Y(0) ~v 2B:ByX(0)]Y(0)~
= [I—y"2ByB4P(0)]

Fe(0). (5.7)
From equation (4.11),
Y(T) = YO\
®.(T,0) = Y(T)Y(0)!=Y(0)AY(0) (5.8)
Thus, eigenvalues of ®.(T,0) are ;i =1,2,-+---. n. O

12



The following lemmas relate the positive definite periodic solution of the coupled
Riccati equations and the structure properties of systems (controllability and ob-
servability).

Lemma 5.1 [16] Assume (A, By) is controllable. A necessary and sufficient condi-
tion for the ezistence of a positive definite periodic solution P(t) to equations (3.1)
- (3.2) such that the hybrid system (5.1)-(5.2) is asymptotically stable is that no
eigenvalue of ®(T,0) lies on the unit circle. a

Lemma 5.2 [16] Assume that no eigenvalue of ®(T,0) lies on the unit circle and

(A, By) is controllable. Then there exists a unique positive definite periodic solution
P(t) to equations (3.1)-(3.2) if (C1, A) is observable. O

Proof of Theorem 3.2: It follows immediately from the Theorem 5.1 and Lemmas
5.1-5.2.

5.2 Theorem 3.3

(Sufficient condition):
Consider the following Lyapunov function candidate,

V(t) = z(t) P(t)z(t). (5.9)
Since P(t) = P(t)’ > 0, then V(t) is positive definite. P(t) is a periodic function
with jumps, so is the function V(¢). Hence we need to show that V(t) is monotone
decreasing, i,e.,

V(t) = V(t2) <0, t1 <t2, Vii,ta. (5.10)

We consider two cases:

(1) t #4T, differentiate V'(t) along the trajectory of system (3.12),
vie) = () P(t)x(t) + z(t) P()x(t) + z(t) P(t)(t)
(t)
(

8.

= 2(t) (P(t) + Ac(t)' P(2) + P(t) Ac(t))2(t)
= —z(t)H(t)H(t)z(t) (5.11)

< 0.
Hence inequality holds for all £y, ¢y # iT.

(2) t=1T,1 =0, 1,2,.--... . In the rest of proof, we use i to replace iT for the sake
of brevity. Since V' (t) = —x(¢)'H(¢)' H(t)z(t) < 0,

VGE) = V(GE-1)%) - /iilm(f)'ﬂ(f)'ﬂ(f)x(f)df
V(iEt) = z@)P@*)a(i)
= o(1) P())z(i) + 2(1) Qimp (i) (i)
= V(i) + 2() Qump(i)2(3). (5.12)
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Hence,

i

V(i+) = V(G = 1)) = 2(6) Qump i)z (i) — / o(r) H(r) H(r)z(r)dr. (5.13)

i-1

;From equation (3.12), we can explicitly solve z(t) starting at arbitrary z(; — 1),

z(t) = ®a (8,4 — V)z(i — 1), VE€ [(i — 1), ). (5.14)
Replace z(t) in equation (5.13) by (5.14),

V(i) -v(E-17)

= o(i = 1)'[®, (1,1 — 1)Qemp(8) P, (3,1 — 1)

- / l @ (ri = DHEYH(D R4, (ri — Ddrlali = 1), (515)

Since Ac(t), H(t)'H(t) and Qimp(i) are periodic, ®4,(i,i — 1) = ®4,(T,0), and

Qimp(T) = Qimp(T) for all 1 = 0,1,2,-----. . The equation (5.15) can be further
simplified as

VEh) -v(i-1") = z(é — 1)'[®4 (T, 0)Qump(T) D 4, (T, 0)
T
- /0 &', (r,0)H(r) H(r)® 4, (, 0)dr]a(i — 1)
< 0, by inequality (3.15). (5.16)

(Necessary condition):
Since the closed-loop system A.(t) is asymptotically stable and P(t) is positive
definite, the inequality (3.15) follows immediately from Propositions 5.1 and 5.2. O

5.3 Theorem 3.1

We use the standard completion of squares method while accounting for the possible
jumps. Differentiating z'(¢)P(t)z(t) along the trajectory of system (2.5), we obtain

ditx'Pm = #()PE)a(t) + & ) P(H)2(t) + 7' (£)PO)i(t)
= o' (t)[A'P(t) + P(t) + P(t)Alz(t) + 2 < u, BiPz >. (5.17)
Replace term [A'P(t) + P(t) + P(t)A] by equation (3.1), and use assumption i1),
ditw'Pw = —z/(¢)C]Ciz(t) + 2'(t)P(t) By B P(t)z(t) + 2 < u, B} Pz >
= —l2|* +|lu + B} Pz||. (5.18)

Integrating equation (5.18) from [iT', (¢ 4 1)T7] for some i, the right-hand side (RHS)
of equation (5.18) becomes

RHS = _||z||[2iT,(i+1)T] + ||u + Bipwll[ziT,(Hl)T]- (5.19)
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where the left-hand side (LHS) of equation (5.17) becomes

LHS = o'((TY)PETH)z(iTT) — ' (iT)P(iT)z(iT)
= [z(iT) + Bawo(s)]' P(T)[2(iT) + Bavo(4)]
—2'(4T) P(iT)z (iT)
= vy(i) BaP(iT")Bauo (i) + 2 < vo(i), BoP(iTT)z(iT) >
+z(iT)[P(TT) — P(iT)]z(iT)
= —|lwo(@)|* + |(*T + Bz P(iT*)B,)"/?
x[vo(3) + (y2I + BSP(iTT)By) ' By P(iT )z (:T))||2.  (5.20)
Since the closed-loop system is stable, hence z(t) — 0 as ¢ — oo. Assume the initial

condition z(0) = 0. Integrate above equation from 0 to oo, we obtain the following
equation,

o0
ol + 3" (Y2 + BoP(iT*)By)"/?

i=0
x[vo(3) + (v2I + ByP(iT ") Bg) "' By P(iT )z (iT))| 2
= =ll2liZ; + llu+ BiPall,. (5.21)
Taking a feedback controller u(t) = —BjP(¢)z(t) and since the summation term is

always nonnegative. Thus we have the following inequality
I2013, < ¥llvoll?- (5.22)
It is easy to see from (5.21) that the worst case impulsive disturbances is
vo(3) = —(Y2I + ByP(KT*)By) ' B4P(iT 1)z (iT). (5.23)

O

6 Conclusion

In this paper, we have given a complete state-space solution to the (sub)optimal
control problem of a class of linear systems suject to impulsive disturbances. The
state feedback controller can be computed in terms of the unique positive definite
periodic solution of a coupled Riccati equations. The procedure to compute such a
feedback controller is outlined as follows:

1). Given 7y > 0, check if the matrix ®(T,0) has no eigenvalues on the unit circle.
If not, increase 7y until the condition is satisfied.
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2). Compute the periodic solution P(t) according to equations (4.3), (4.7) and
(4.10).

3). Check if the inequality (3.15) is satisfied. If not, go back to step 1) and increase
v until this condition is satisfied.

4). Compute the feedback controller u(¢) according to equation (3.3).

The results obtained in this paper can be extended into the output feedback case,
or more interestingly, into the nonlinear impact control problems [2, 16].
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